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Determining Aerodynamic Loads Based on Optical
Deformation Measurements
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A preliminary study is described for determining aerodynamic loads based on optical elastic deformation mea-
surements using a videogrammetric system. Data reduction methods are developed and used to extract the normal
force and pitching moment from beam deformation data. The axial force is obtained by measuring the axial
translational motion of a movable shaft in a spring/bearing device. Proof-of-concept calibration experiments are
conducted to assess the feasibility of the optical technique for measuring aerodynamic loads. The uncertainties in
optical force and moment measurements are discussed.

I. Introduction

I NTERNAL strain gauge balances have been used for years as
a standard technique for measuring the integrated aerodynamic

forces and moments on models in wind tunnels. A variety of inter-
nal strain gauge balances have been developed, and the technical
aspects of various balances have been studied in detail.1 Generally
speaking, the structure of an internal strain gauge balance is com-
plicated, and the cost of fabrication is high. This paper presents an
exploratorystudy for remotely measuring aerodynamic loads using
a videogrammetic system. Unlike strain gauges, this method op-
tically measures beam deformation to determine the normal force
and pitching moment. The axial force is obtained by measuring the
translationalmotion of a movable shaft in a spring/bearing device.
Mathematical models for data reduction are developed to extract
the aerodynamic forces and moments from the deformation data.
Uncertainty analysis is given to evaluate the contributionsfrom the
elemental error sources and correlation terms. At this stage, the
normal force, pitching moment, and axial force are the primary
quantities to be determined. In principle, the side force, rolling mo-
ment, and yawing moment can be determined in a similar manner.
Proof-of-concept laboratory experiments have been conducted to
validate the proposed methodology for measuring the aerodynamic
loads. Potentially, this optical method can be used as an alternative
to strain gauge balances. In addition, the techniquedescribed in this
paper can be integratedwith optical model attitude and deformation
measurement techniques.2;3

II. Cantilever Beam Deformation
The deformation of a cantilever beam is utilized in this study to

calculate the normal force and pitching moment. Consider a can-
tileverbeambent by a force F anda moment M appliedat the end,as
shown in Fig. 1. According to the engineeringbeam theory in which
the deformationdue to shear strain is assumed to be negligible,4 the
normal coordinatev of the beam is described by

EI.x/vx x D ¡F.L ¡ x/ ¡ M (1)

where vx x is the second derivative with respect to x , M is the local
bending moment, E is the modulus of elasticity, and I .x/ is the
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moment of inertia.The boundaryconditionsare vx .x D 0/ D vx0 and
v.x D 0/ D v0. The solutionfor the displacement±v D v ¡ v0 ¡ vx0x
is

±v.x/ D ¡E¡1.FL C M /Q1.x/ C E¡1 F Q2.x/ (2)

where Q1.x/ and Q2.x/ are the coef� cients de� ned as

Q1.x/ D
Z x

0

dx 0

Z x 0

0

[I .x 00/]¡1 dx 00

Q2.x/ D
Z x

0

dx 0

Z x 0

0

[I .x 00/]¡1x 00 dx 00

For a rectangular cross section beam, the moment of inertia is I D
wh3=12, where w is the width and h is the height of the cross
section. For a circular cross section beam, the moment of inertia
is I D ¼R4=4, where R is the radius of the circular cross section.
When a beam has a constantcross section and the moment of inertia
is constant, expression (2) becomes

±v.x/ D ¡.EI/¡1.FL C M/x2=2 C .EI/¡1 Fx3=6 (3)

Therefore, the local displacement ±v and the slope change ±vx D
vx ¡ vx0 are

³
±v

±vx

´
D

³
x3=6EI ¡x2=2EI

x2=2EI ¡x=EI

´ ³
F

Mc

´
(4)

where Mc D FL C M is the moment with respect to a moment cen-
ter c. Equation (4) gives a linearrelationbetweenthedeformation±v
and ±vx and the force and moment F and Mc. When the deformation
due to shear strain is taken into account, a more complete analysis
of a rectangular cantilever beam gives a nonlinear relation between
±v and ±vx and F and Mc (Ref. 5). The theoretical results provide
basic models for data reduction to recover the force and moment.
Generally, given the force and moment, the theoretical relations de-
scribe beam deformation pro� les well. However, inversion to the
force and moment from deformation measurements is a stiff prob-
lem that is very sensitive to small errors. In practical data reduction
procedures, the theoretical results are combinedwith empiricism to
deal with imperfections in the real measurements.

III. Data Reduction Methods
A. Method Based on Local Displacement and Slope

Equations (3) and (4) indicate that the force F and moment Mc

depend on the local displacement ±v and the change of slope ±vx .
Therefore, F and Mc can be determined from measurements of
±v and ±vx . Here, the pitching moment Mc is de� ned as Mc D
F.L ¡ L c/, where L is the distance between the force (load) lo-
cation and the beam support and L c is the distance between the
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Fig. 1 Cantilever beam deformed by a force F and a moment M.

Fig. 2 Deformation of a beam (sting) with targets.

moment center c and the support. The local displacement and the
change of slope are de� ned as

±v D v.x/ ¡ v.xref/ ¡ vx .xref/xref; ±vx D vx .x/ ¡ vx .xref/
(5)

where xref is the reference location where deformation is much
smaller, such as a positionnear the support. Insteadof directlyusing
Eq. (5), the practicalproceduresfor calculating±v and ±vx are based
on a conformal transformationbecause of its robustness.

The quantities ±v and ±vx are calculated from the optically mea-
sured coordinates of high-contrast targets positioned on the beam.
Figure 2 shows a typical layout of targets on a beam (sting) con-
nected with a wind-tunnel model. A row of targets, B in Fig. 2, is
placed in parallelto thebeamcenterlinenear the wind-tunnelmodel.
Another row of targets, reference targets A, is placed near the sup-
port of the beam. When the beam is de� ectedby aerodynamicloads,
not only do the targets at B move, but also the reference targets at
A may move slightly because the support is not absolutely rigid.
Thus, the total movement of target row B contains both the relative
deformation at B with respect to A and the local movement at A.
The local deformation at B, which is more sensitive to loads, can
be obtained by removing the local movement at A from the total
movement at B.

To correct the movement of the reference target row A due to
loads, the load-off (or wind-off) position of the target row A is used
as a baseline position. Assuming that the local movement of the
reference target row A can be approximated as rigid-body motion,
one obtains a conformal transformationbetween the load-off coor-
dinate . QX ; QZ / and load-oncoordinate.X; Z / for the referencetarget
row A:

³ QX
QZ

´
D

³
cos µA sin µA

¡sin µA cosµA

´ ³
X

Z

´
C

³
Tx A

Tz A

´
(6)

where µA is a rotational angle at A and Tx A and Tz A are the trans-
lations at A. The coordinate system .X; Y; Z / is a standard wind-
tunnel coordinatesystem in which X is in the freestream� ow direc-
tion, Y is in the spanwise direction,and Z is in the verticaldirection.
The beam deformation is in the .X; Z / plane. The rotational angle
µA and the translations Tx A and Tz A can be determined from the
measured load-off and load-oncoordinatesof target row A by using
the least-squaresmethod.

Applying the conformal transformation (6) to the load-on coor-
dinates of the target row B, we are able to eliminate the effect of the
local movement at A. We denote the transformed load-on coordi-
nates of target row B as QX B on and QZ B on and call them the realigned
load-oncoordinatesof target row B relative to the referenceload-off
target row A. The realigned load-on coordinates QX B on and QZ B on of

the targetrowB are related to the correspondingload-offcoordinates
QX B off and QZ B off by the following conformal transformation:

³ QX B on

QZ B on

´
D

³
cosµB sin µB

¡sin µB cosµB

´ ³ QX B off

QZ B off

´
C

³
Tx B

Tz B

´
(7)

The changeof the bendingangle at the targetrow B is µB , and 1rB D
.Tx B ; Tz B / is the displacement vector at the target row B. The val-
ues of µB and 1rB D .Tx B ; Tz B / can be determined by using the
least-squares method, representing the average quantities of local
deformation for the target row B. Therefore, the normal displace-
ment and the change of the slope at B due to loads are, respectively,

±v D nB ¢ 1rB ; ±vx D tan.µB/ (8)

where nB is the unit vector normal to the beam axis at B.
In reality, the relationship between F and Mc and ±v and ±vx

is more complicated than theoretical prediction by the engineering
beam theory. The relations for calculating F and Mc are generally
expressed as

F D f1.±v; ±vx /; Mc D f2.±v; ±vx / (9)

In practice,we do not tend to � t globally the whole set of calibration
data to obtain the complete functional relations. Instead, for a given
data point .±v; ±vx /, we use a local second-order polynomial to
interpolate a group of neighboring calibration data points, that is,

F D B1±; Mc D B2± (10)

where ± D [±v; ±vx ; .±v/2; ±v±vx ; .±vx /2]T is the deformation vec-
tor and B1 and B2 are the coef� cients determined by calibration.

A simple model approach can be also used to recover F and Mc

from given ±v and ±vx . It is found that for a suitablychosen moment
center Lc , the moment Mc D F.L ¡ L c/ is simply a linear function
of either ±v or ±vx . This is a reduced case where ±v is proportional
to ±vx . In this case, the moment Mc is givenby a simple proportional
relation

Mc D F.L ¡ Lc/ D ®.±v/ (11)

where ® is a proportional constant determined by calibration. The
best moment center x D L c can be determined by an optimization
scheme to maximize the linearityof Eq. (11). In addition, an empir-
ical relation between F and ±v is

±v D
£
¯0 C ¯1.L ¡ Lc/ C ¯2.L ¡ L c/

2
¤
F (12)

where ¯0; ¯1, and ¯2 are constants determined in calibration.Elim-
inating .L ¡ L c/ in Eqs. (11) and (12), one obtains a quadratic
algebraic equation for F :

¯0 F2 C .¯1 Mc ¡ ±v/F C ¯2 M 2
c D 0 (13)

In principle, F and Mc can be obtained from Eqs. (11) and (13)
for a given ±v. However, Eq. (13) has two real roots that are often
close to each other. It is not always easy to determine the correct
solution without a good initial guess of F . This is a shortcomingof
the simple model approach.

B. Method Based on Global Beam Deformation Pro� le
From Eq. (3), one knows that the displacement±v along the beam

axis can be described by the theoretical relation

±v.x/ D ax2 C bx3 (14)

where x is the coordinate along the beam axis, ±v is obtained using
Eq. (8), and the coef� cients a and b are related to F and Mc . In
reality, however, the relation between (a and b) and (F and Mc ) is
not as simple as that given by Eq. (3). The empirical relations are
symbolically expressed as

F D f1.a; b/; Mc D f2.a; b/ (15)

For a given data point .a; b/, a local second-orderpolynomial � t to
a group of neighboring calibration data points is used to recover F
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and Mc. As an alternative, we also use a simple model approach to
calculate F and Mc. The empirical functional relations are

a D
£
a0 C a1.L ¡ L c/ C a2.L ¡ L c/

2
¤
F

b D
£
b0 C b1.L ¡ Lc/ C b2.L ¡ L c/

2
¤
F (16)

where .a0; a1; a2/ and .b0; b1; b2/ are determinedin calibration.The
solution to Eq. (16) is

L ¡ Lc D
¡
¡c1 §

p
c2

1 ¡ 4c2c0

¢¯
.2c2/

F D a
¯£

a0 C a1.L ¡ L c/ C a2.L ¡ Lc/
2
¤

(17)

where c0 D b0a=b ¡ a0; c1 D b1a=b ¡ a1 , and c2 D b2a=b ¡ a2 .

C. Uncertainty
For uncertaintyanalysis,considerthe general functionalrelations

between F and Mc and ±v and ±vx ,

F D f1.±v; ±vx ; p/; Mc D f2.±v; ±vx ; q/ (18)

where p D [p1; p2; : : : ; pN ] and q D [q1; q2; : : : ; qN ] are the param-
eters characterizingthe functional relations. A standarduncertainty
analysis6 gives the error propagationequations for the relative vari-
ances of F and Mc ,

var.F/

F2
D

NX

i D 1

S2
1pi

var.pi /

p2
i

C S2
1±v

var.±v/

.±v/2
C S2

1±vx

var.±vx /

.±vx /2

C S1±v S1±vx R.±v; ±vx /
[var.±v/ var.±vx /]

1
2

±v±vx
C

var.F/DR

F2
(19)

var.Mc/

M2
c

D
NX

i D 1

S2
2qi

var.qi /

q2
i

C S2
2±v

var.±v/

.±v/2
C S2

2±vx

var.±vx /

.±vx /2

C S2±v S2±vx R.±v; ±vx /
[var.±v/ var.±vx /]

1
2

±v±vx
C var.Mc/DR

M2
c

(20)

where the sensitivitycoef� cientsare S1 pi D .pi =F/.@ F=@pi /, S2qi D
.qi=Mc/.@ Mc=@qi /; S1±v D .±v=F/.@ F=@±v/; S1±ºx D .±vx=F /.@ F=
@±vx /, S2±v D .±v=Mc/.@ Mc=@±v/, and S2±vx D .±vx =Mc/.@ Mc=
@±vx /. The correlationcoef� cient R.³i ; ³ j / between the variables³i

and ³ j is de� ned as R.³i ; ³ j / D cov.³i ³ j /=[var.³i / var.³ j /]1=2, and
the variance and covariance are var.³i / D h1³ 2

i i and cov.³i ³ j / D
h1³i 1³ j i, where the h i denotes the statistical ensemble average
and 1³i D ³i ¡ h³i i is the variation.There are two types of contribu-
tions to the total uncertainties in F and Mc. The summation terms
in the right-hand side of Eqs. (19) and (20) are the uncertainties
in least-squares estimation of the coef� cients p and q in the data
reduction models. The other three terms in the right-hand side are
the uncertainties in measurements of ±v and ±vx . The uncertainties
in measurements of ±v and ±vx are determined by the accuracy of
the camera calibration. (The relative error is about 1=60,000 for
the videogrammetric system used.) In addition, var.F/DR=F2 and
var.Mc/DR=M2

c are important bias errors associated with the math-
ematical data reduction models that fail to describe accurately the
behaviorofmeasurementdata.Theseerrorswill be furtherdiscussed
to compare the optical method with strain gauge balances.

The correlation terms of Eqs. (19) and (20) are more intriguing
because they could be positive or negative. The total uncertainties
decrease when the correlation terms are negative, and otherwise
the total uncertainties increase. Based on the linear theoretical re-
lation (4), the correlation between ±v and ±vx can be calculated,
that is,

h1.±v/1.±vx /i D
x3h.1F/2i

12.EI/2
[x ¡2.L ¡ L c/][x ¡3.L ¡ L c/]

(21)

The correlation terms in Eqs. (19) and (20) are

S1±v S1±vx

h1.±v/1.±vx /i
±v±vx

D
h.1F/2i

x2 F2
[x ¡ 2.L ¡ Lc/][x ¡ 3.L ¡ Lc/]

S2±v S2±vx

h1.±v/1.±vx /i
±v±vx

D
h.1F/2i

6M2
c

[x ¡ 2.L ¡ Lc/][x ¡ 3.L ¡ Lc/] (22)

The correlation terms are negative for 2.L ¡ Lc/ < x < 3.L ¡ L c/
and 0 < L c < L . Furthermore,at a � xed target locationx D r L (r · 1
is a fractionalconstant), the correlation terms are negativewhen the
moment center x D L c is in .2 ¡ r/L=2 < Lc < .3 ¡ r/L=3. This
analysis indicates that the moment center can be suitably selected
to reduce the total uncertainties in measurements.

IV. Videogrammetric System
In this study, elastic deformation of a beam is measured using

a videogrammetric system. Based on the principles of close-range
photogrammetry, the videogrammetric system measures the coor-
dinates of targets distributed along the beam from target centroids
in digital images. Deformation of the beam is then calculated from
the measured target coordinates. Figure 3 shows a schematic of a
two-camera videogrammetric system used for deformation mea-
surements. The basic hardware for this system consists of two
Hitachi KP-F1 charge-coupleddevice cameras and a Dell personal
computer with a Matrox Pulsar frame grabber board. Lenses with
different focal lengthscan be selected,dependingon a ratio between
the object size and the distance of the object from the cameras.
In the tests reported in this paper, two 15-mm lenses were used.
The cameras with different lenses can be rapidly calibrated with a
goodaccuracywith an optimizationcamera method.7 Ordinary light
sourcescan beusedas long as theycanprovidesuf� cientlyhigh con-
trast of targets. For retrore� ecting targets, light sources should be
placed near the cameras to achieve the maximum re� ection from
the targets. In the beam tests, an array of retrore� ecting targets were
placed on a beam. Software includes programs for image acquisi-
tion, target tracking/centroid calculations, and camera calibration.
This system is able to provide three-dimensionalcoordinates X; Y ,
and Z in almost real time. The accuracy of the videogrammetric
system used for this work is typically 1=60,000,which is a ratio be-
tween the metric measurement error on the object and the distance
of the cameras from the object. After the coordinates of the targets
on the beam are obtained, the deformation (±v; ±vx ) can be calcu-
lated. The data reduction programs for calculating the deformation,

Fig.3 Two-cameravideogrammetricsystem for deformationmeasure-
ments in wind tunnels.
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force, and moment are written in MATLAB®. The technical aspects
of the videogrammetricsystem have been described in detail by Liu
et al.7;8 Comprehensivereviewsof the applicationof videogramme-
try to wind-tunnel testing have been given by Burner and Liu2 and
Liu et al.7

V. Experimental Results
A. Simple Beams

Three simple beams have been calibrated to examine the pro-
posedmethodologyof recoveringthe normal force and pitchingmo-
ment. One is a brass beam with a 0:75 £ 0:75 in. (19:1 £ 19:1 mm)
square cross section and the rigidity of EI D 350 £ 103 lb-in.2

(102:4 kg-m2 ). Another is a more � exible stainless-steel beam
that is actually a � at plate with a rectangular cross section of
1:5 £ 0:25 in. (38:1 £ 6:35 mm) and the rigidity of EI D 47 £
103 lb-in.2 (13.8 kg-m2). The third is a more rigid stainless-steel
beam having a circular cross section with a diameter 0.75 in.
(19.1 mm) and the rigidity of EI D 442 £ 103 lb-in.2 (129.3 kg-m2 ).
A number of retrore�ecting targets are placed along the centerline
of each beam for deformation measurements.

Figure 4 shows the local displacement and slope change ±v and
±vx as a functionof the normal forcefor thebrassbeamat four differ-
ent loading positions L D 20:52, 21.86, 23.17, and 24.58 in. (0.521,
0.555, 0.588, and 0.624 m). It has been found that the dependence
of both the local displacement and the slope change on the pitch-
ing moment is linear when the moment center is suitably chosen.
The linear relations are clearly shown in Fig. 5 for the brass beam,
where the moment center determined by an optimization scheme is
located at Lc D 9:03 in (0.229 m). This linearity is utilized in the
simple model method for data reduction. Figure 6 shows the errors
in measurements of the normal force and pitching moment by us-

Fig. 4 Local displacement and local slope change as a function of the
normal force at four loading positions for a brass beam.

Fig. 5 Local displacement and slope change as a function of the pitch-
ing moment for a brass beam.

Fig. 6 Relative errors in the normal force and pitching moment for a
brass beam when the data reduction method is based on local displace-
ment and slope change.

ing the method based on local displacement and slope change for
the brass beam. The local second-order polynomial and the simple
model methods are used for data interpolation.For the soft and stiff
stainless steel beams, Fig. 7 shows the measurement errors in the
normal force and pitching moment. Typically, the relative errors in
the normal force and pitching moment are roughly within §10 and
§5% in the calibration ranges, respectively.

The method based on global deformation pro� le is used to re-
cover the normal force and pitching moment for the brass beam.
Figure 8 shows measured deformation pro� les of the brass beam
for different loads at the loading position L D 24:58 in. (0.624 m).
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Fig. 7 Relative errors in the normal force and pitching moment for a
soft steel beam and a stiff steel beam when data reduction method is
based on the local displacement and slope change.

Fig. 8 Measured deformation pro� les of a brass beam and the � t by
±v(x) = ax2 + bx3 at the loading position L = 24:58 in. (0.624 m).

These measured data can be well � tted by the theoretical solution
±v.x/ D ax2 C bx3. The errors in measurements of the normal force
and pitching moment are shown in Fig. 9, where the local second-
orderpolynomialand simple model methods are used for data inter-
polation. Compared to the method based on the local displacement
and slope change, the method based on the global deformationpro-
� le gives smaller relative errors in the normal force (within §5%)
and pitching moment (within §3%) for the brass beam.

Fig. 9 Relative errors in the normal force and pitching moment for
a brass beam when the data reduction method is based on the global
deformation pro� le.

Fig. 10 Sting–model con� guration with targets.

B. Sting–Model Combination
A steel sting–model combination used in the Unitary Tunnel at

NASA LangleyResearchCenterwas calibrated,as shownin Fig. 10.
The stinghasa taperingcircularcrosssectionwith a linearlydecreas-
ing radius from 0.5975 to 0.197 in. (15.2 to 5 mm). Accordingly,
the rigidity of the sting decreases from 2800£ 103 to 38 £ 103 lb-
in.2 (819.4 to 11.1 kg-m2) and the mean rigidity is 930 £ 103 lb-in.2

(272.1 kg-m2 ). In calibration tests, the maximum displacement of
the sting is about 0.03 in. (0.76 mm), and the maximum change of
the local bending angle is about 0.23 deg. Two strain gauge bridges
were also installedon the sting for measurementof the normal force
and pitching moment, which allows a direct comparison between
the strain gauge method and the optical method.

During calibrationtests, a numberof deadweights from 2 to 10 lb
(0.91 to 4.54 kg) were loaded at three different locations on the
model to generate the required forces and moments. Three retrore-
� ecting targets were placed near the model for measuring local
deformation, and four other targets were placed near the support



1110 LIU ET AL.

Fig. 11 Comparisonbetween optical method and strain gauges in mea-
surements of normal force and pitching moment for the steel sting–

model con� guration; optical method based on the local displacement
and slope change.

Fig. 12 Three-force beam with targets.

as a reference. The local deformation quantities ±v and ±vx were
measured using the videogrammetric system. The method based
on the local displacement and slope change was used to determine
the normal force and pitching moment. Figure 11 shows the mea-
surement errors in the normal force and pitching moment for this
steel sting–model combination.The results indicate that the optical
method based on remote deformationmeasurement is less accurate
than the more sensitive strain gauges. The relative errors in the nor-
mal force and pitching moment obtained by the optical method are
about §5% in comparison with §2% given by the strain gauges.

C. Three-Force Beam
To measure the axial force along with the normal force and pitch-

ing moment, a three-force beam has been designed and fabricated.
As shown in Fig. 12, the three-force beam consists of a simple
beam and a spring/bearingdevice that only allows translationalmo-
tion along the beam axis. The structure of the spring/bearing device
is shown in Fig. 13. A steel axial load shaft (made of medium-alloy

A-2 steel) is a moving rod that is constrained by a linear bearing
mounted inside the hardwareassembly.The rod is hardenedand has
a groundsurface� nishof 0.625 .C0:0002=¡0:0000/ in. (15.87mm)
on the diameter. This tight tolerance provides a very close inter-
faced � t with the bearing so that all lateral movement is minimized.
Another main component of the device is the spring that balances
the applied axial force. Ranges of the springs with different spring
constants are available that can be selected to meet the require-
ments of the axial force calibration. The three-force beam attaches
to the extended end of a 0.625-in. (15.87-mm)-diam stainless-steel
beam. The spring/bearing device housing has an outside diameter
of 2.38 in. (60.5 mm) and is 6.0 in. (152.4 mm) long. The extended
length of the entire beam assembly is 28.25 in. (0.718 m) in the
balance calibration apparatus. As shown in Fig. 12, a number of
retrore� ecting targets are placed on the simple beam for measuring
the beam deformation.Four targets are placed on the spring/bearing
device as a reference, and another four targets are placed on the
movable shaft for measuring the axial translationalmotion relative
to the referencetargets.The averagespacingbetween retrore� ective
targets is approximately 0.65 in. (16.5 mm).

The normal force and pitching moment are obtained with the
same methods as earlier described. The measurement errors in the
normal force and pitching moment are shown in Fig. 14, indicating
§4% errors for the normal force and §3% errors for the pitching
moment. The axial force Fax is related to the axial displacement±x
by a linear relation Fax ¡ Fax0 D k±x , where k is an effective spring
coef� cient and Fax0 is the force at ±x D 0. When the normal force
FN and pitching moment Mc act on the beam, k and Fax0 are not
true constants, which are weakly dependent on FN and Mc due to
the presence of friction in the bearing. Experiments show that k
and Fax0 are mainly related to the loading position Mc=FN over a
certain range of the normal force. Thus, an empirical calibration
relation for the axial force is Fax D k.Mc=FN /±x C Fax0.Mc=FN /,
where k.Mc=FN / and Fax0.Mc=FN / are empirically expressed by
polynomials. Figure 15 shows the linear relation between the axial
force and the measured axial displacement. Figure 16 shows the
measurement errors in the axial force to be within §8%.

D. Further Discussion on Errors
Experiments show that the optical technique is, at this stage,

less accurate than conventionalstrain gauge balances used in wind-
tunnel testing for many years. Basic uncertainty analysis is needed
to compare the optical method and strain gauge balances.Tripp and
Tcheng9 gave a general statistical analysis of measurement uncer-
taintiesofmulticomponentwind-tunnelbalances.Accordingto their
results, a least-square estimate of the coef� cients of a multivariate
second-order polynomial for calibration data showed the relative
errors of 0.15% of the full-scale load in normal force. When the
experimental accuracy of strain gauge balancesused at NASA Lan-
gley Research Center was studied,Ferris10 reported that the relative
errors in the six force and moment components are less than 0.2%
of the full-scale load. However, there is still a lack of a complete
and systematicuncertaintyanalysisfor straingaugebalances,which
takes all of the elemental error sources of balance hardware units
into account.Clearly, a completeuncertaintyanalysis requires a full
set of mathematical models for all of the balance system elements.
Here, instead of carrying out a complete uncertainty analysis, we
give basic estimates to explain why the current optical method has
much larger errors than strain gauge balances. In principle, the gen-
eral uncertaintyanalysis formulationsof Eqs. (19) and (20) are also
valid for strain gauge balances as long as the local displacement
±v and slope change ±vx are replaced by local strain gauge bridge
outputs. Thus, we are able to rationally compare the measurement
errorsof ±v and ±vx with those of strain gauge bridgeoutputs. In our
experiments, the cameras are about 120 in. (about 3 m) away from
the tested beams, and thus the metric resolution of the videogram-
metric system is about 0.002 in. (0.05 mm) because the accuracy
of the system is 1=60,000 of the distance from the object. For a
typical beam, such as the brass beam whose deformation is about
0.02–0.16 in. (0.5–4.1 mm), the relative error in displacementmea-
sured by the videogrammetric system ranges from 1 to 10%. By
comparison, the measurement error of a typical strain gauge bridge
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Fig. 13 Structure of the spring/bearing device.

Fig. 14 Relative errors in the normal force and pitching moment for
the three-force beam at different axial loads; data reduction method
based on the local displacement and slope change.

is typically 0.1%. In general, the videogrammetric system has a
much largermeasurementerror than straingaugebridges,especially
when the cameras are located far from the beam. As discussed in
Sec. III.C, another important error is associatedwith � tting the cali-
bration data with a mathematicaldata reduction model. Because the
structureof a straingaugebalanceis deliberatelydesignedto decou-
ple interactions among different measurement components, forces
and moment data are distributed as spreading surfaces in the para-
metric space. Hence, they can be reasonably described by a global
second-or third-orderpolynomialof strain gauge bridge outputs. In
contrast, the optical method based on beam deformation measure-
ments cannottake theadvantageof a speciallydesignedstructurefor
decoupling the different components.As a result, the measurement
quantities in the optical method, such as ±v and ±vx , are highly cor-

Fig. 15 Axial force as a function of the axial displacement.

Fig. 16 Measurement errors in the axial force for the three-force beam
at different normal forces and loading positions.

related. Geometrically, the normal force and pitching moment are
represented by narrow conical surfaces in the parametric space of
±v and ±vx . In a limiting case ±v / ±vx , the narrow conical surface
is reduced to a space curve. Because these narrow conical surfaces
cannot be accurately � tted by a global second or third polynomial,
the current optical method has a larger error in � tting calibration
data than a strain gauge balance. This error associatedwith data re-
ductionmodel dominates the total uncertaintyof the opticalmethod
presented in this work. Therefore, a more reasonable mathemati-
cal model for data reduction is desirable to describe accurately the
narrow conical surface in the parametric space and to reduce the
measurement uncertainty.
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VI. Conclusions
The methodology of optically measuring aerodynamic loads has

been developed based on beam deformation theory. A two-camera
videogrammetricsystem was used for opticaldeformationmeasure-
ments. The data reduction models for extracting the normal force
andpitchingmomentutilizedeither the localdisplacementand slope
change or the global beam deformation pro� le. Calibration data in-
terpolation was made by either the local second-order polynomial
� t or the simple model approach.To validate the proposed method-
ology, three simple metallic beams with different rigidities were
tested to recover the normal force and pitching moment. A steel
sting–model combination was also calibrated for a direct compar-
ison between the strain gauge method and optical method. Typi-
cally, the relative errors in the normal force and pitching moment
range from §5 to §10% and §2 to §5%, respectively. To de-
termine the axial force, a three-force beam that allows the axial
translational motion was designed and fabricated. The axial force
was obtained by measuring the translational motion of a movable
shaft in a spring/bearing device. The measurement errors in the
axial force are within §8%. To date, the current optical method
is much less accurate than well-developed strain gauge balances
(typically 0.15%) due to less accurate remote optical metric mea-
surements and a poor polynomial � tting for highly correlatedquan-
tities in the parametric space. At this stage, the optical method is
useful as an alternative in certain cases where strain gauge bal-
ances cannot be easily applied and in some preliminary tests that
do not require a high accuracy. In addition, the optical method can
be integrated with other modern optical techniques for wind-tunnel
testing, such as videogrammetric model attitude/deformation mea-
surement, pressure- and temperature-sensitive paints, and particle

image velocimetry.Further researchefforts will be made to improve
the accuracyof the opticalmethod in measuringaerodynamicloads.
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